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NEW RESULTS IN 2—b SYSTEMS THEORY , 2-b STATE-SPACE MODELS — REALIZATION
AND THE NOTIONS OF CONTROLLM3ILITY , OBS?~RVABI LITY AND MINI)~!ILITY

~~ by B. Levy, S.Y. Kung and H. Morf
Information Systems Laboratory, Stanford University, Stanford , California 94305

AFOSR-TJ~. 7 8 - 0 1 5 7

Abstract If we are given an irreducible transfer func—• lion of order (n,a), a state—space realization is• A short comparison between the dif-. minimal if and only if it is of size n + m. Theferent state—spa ce models is presented. We discuss existence of such Cm + is) (real. or co~p1ex) ~tzteproper definitions of state, controllability and realizations is discussed in Section 6, .~ereobservabiltty and their relation to s’intsality of we provide a simple COj ~ ter e~ :npIc 2 a
2—D systems. We also present new circuit realiza— - .modcl. In the Appendix we give a 2-D general izaticn
tines and 2—D digital filter hardware implements— of Lcvlnson’s algorithm. In conclusion, i~tions of 2—D transfer functions, as well a. a 2—b appears that the results obtained by the algebraic
generalization of Levinson ’s algorithm. and the practical approaches are quite conpatible.

2. State—Space Models for 2—b Systems1. Introduction

At las!, Forr,a,jni—~4az chesj~ j , Givone—Roesa.r During recen t years, several authors : Attasi
have proposed dif ferent  state—space models for 2—n [l)~ [2], Fornasini—Marchosinl 13), (4 1 and Civono—

Booster (5J )sove’.propuaed d i ff e ren t  state—spacesystems and have suggested some extensions of the models for 2—b systems . In (4 ) ,  Fornasinl andusual 1—b notions of controllability , observability Marcheaini were using the algebraic point of viewand mininality to the 2—D case. However , these re— of Scrod. equivalence and were the f irst  to reel—gulls are not quit, satisfactory; they either lack
motivation for the state—space models introduced or La. that a major difference between l—D and 2—D

systems is that we can introduce a global statethe notion of state—space is improperly defincd. 
and a local state in the 2—0 case. the global

answers to these questions from a practical as well preserves all the past information while the local
In this paper and in (18], we tried to provide state (which is of infinite dimension in general)

as algebraic standpoint. We start with a discussion state gives us the size of the recursions to be
of all the current models based on a practical (cir— performed at each step by the 2—b filter. However,
cuit—oriented) point of view and on a proper def i— their state does not obey a first—order difference
nition of state. Since the other models can be equation (the notion of first order difference
imb edd ed in the Civone—Roesser model , it appears to equation for linear systems on par t ia l ly  ordered
be the most satisfactory one. sct’i bar been defined by Mullans and Elliott in

From the circuit point of view, we present in [7]). Attasi ’. model (1], [2) suffers from the
Section 3 an implementation of 2—D transfer fume— *ame drawback.
lions using two types of dynamic elements — hor i— Civone and Rocsser jn (81 and (51 have used azontal delay elements z 1 and vertical delay d c —  “circuit approach” to the proble. of state spacements.er1. The hardware inplementation of 2—0 digi— realization for some 2—b t ransfer  functions . Ihey
tel filters for imaging systems is also discussed present a model in whUh the local state is di—in Section 3.. vided into an horizontal and a vertical state

An algebraic approach based on eigencurves and vhich are propagated respectively horizontally and
eig.ncones enables us in Section 5 to introduce the vertically by first 

~~4~r difference equations.
concept of modal controllability (observability). Mitra, Sagar and Pendergrass gave a realiza—
vs show that a system is min imal if and only if it lion for arbitrary transfer functions in (9) byis modally observable and controllable. presonting an implementation method for 2-D trans-

fer functions using some delay elements e 1 and ~1r1.
This work was supported b~’ the Advanced Re— via an approach that is consistent with Roesser ’s

model. A detailed comparison can be found in (183,search Projects Agency through the facilities at 
Part II.the Stanford Artif icial  Intelligence I.aboratory in

part by the ~ationa 1 Science Foundation under Con—
tract N SF—E ng lS— 18952 and in part by the Air Force 

3 Circuit Realizations and Hardware DesignsOff ice  of Sctdnt ifj c Research , A? Systems Command ,
under Contrac t A? 44—620-69-C-OlOl and partially by
the Joint Services Electronics Program under Con— Firs t, we can note that the notion of “dynamic
tract $—00014— 67—A—0l12—00 44. elements” , “multipliers” and “adders ” is at the

center of circuit thcory. In the l—D diacrcte—tlne
ease , the dynam ic elements used arc (time) delay

App .vuvtiu b r  9~
. ~.L C
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elcmcnts. The 1—0 realization problems have been Figure 3. 2: 2-D Controller Form RealLsa~ ton
well studied and , given any transfer function, it
is well known that the renlization can be readily I . 1
found in certain standard (e.g. controller canoni— 

*cal) forms fill . For the realization of a 2—0
transfer function , a major difference is that two
types of dynamic elements are needed — “horizontal
dçlay element” Cr—1 ) and 1’vertical delay element”
(i~r l) .  Now an important problem is that of how to
use 2—D dynamic elements , mult ipl ie rs and adders to
realize a 2—0 digital filter with the transfer 
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~~~~~~~
—function: 
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m ,(3.l) —a(z~~,w ’) ~ I a ~~ z~~w~~ ¼1.0 j
We can do this in two steps. First we rewrite
(3.1) in a rational—gain representation , i.e.

a _____

H(z~~,w~~) — 
i~o 

b~(w~~) 
• (3.2) I~~iit

~ 
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Without loss of generality, we can assume a~~ 1 flate Space Model Representation
and we denote

As remarked in Section 2 , circuit implemem—
(j 1

) ~ 1 +2~(ta
1) tations with delay elements r i and are in a

one—to—one correspondence with slate space models
Thus, usi ng the l—D realization technique, we write of Roesser ’s type. The output of the ~~l delays
down a realization, where the fain, of the multi are the horizontal states and the outputs of the
pliers are represented in F(~r 1 er’ delays are the vertical states .

Figure 3.1 _____________________________________ Thus , the implementation of Figure 3.2 can be
transformed readily into the following state space
model;

nIxh(i+l,i) 1 xb (i ,j)
b1(~$’) b3(c3’!) 

ml 

x~~(i1~+l) I — A[x (i,j)l +
_____ _____ _____ 
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(3.3)

y(i,j) • c x(i,j) + b~~u(i,j)

I 

~~~ 
rA11 Liii 01 b’ A[~~ ‘~~ m’~~ Om~

Q2~f3’~ a3 c1 ’ where

p A ”  I A : A;2 L ‘
The realizat ion is almost achieved : in addi—

tion to the n horizontal delay elements we need with
only n vertical delay elements to implement the
feedback gains (a~(t~r1)~ i-O , 1.. .s~) and a Other Lii ~ — 

~l ~n0 ‘ ~22 ~vertical delay elements to impleir.cnt the readout
gains (b j(trl) ,  i’O , l...mI. Thus, the complete and
realization shown in Figure 3.2 requires only tt+2m
dynamic elements. 

(
j j ~~1 j f $ j o

1
Qj  

,

This realization is a standard (canonical) ~~~~~~~~~~~~~~ , 1Ciq~, 0~js;~~1~~[b01,...,b~~f
one; its structure is very simple and it involves •

•nly real gains . Note also that we need fewer tz)1,A (df
l+t.i ; 1dynaule elements th an the implementations in (9) .  9 fIR

~Omê~
aOl,..~~
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S
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A discussion of some interesting properties of 2-b Comparing (3.8) . (3.9) , it is clear that~~~~~~~~~~~~~
state space models can be found in (18).

. v.. — 

~~~ 
(3.10)

Hardware Design of 2—D Digital Filter b (i,j):iM+jtl — t
• Since the system is a causal system,The idea of using two types of dynamic ele—

4 ments is not very abstract; it is very natural in Yj,j 
— 0 if 1~3 c 0 . (3.11)

delay—d ifferential systems. However, before -

considering its practical application to image sys— Let us consider only the integer t with
tens, two remarks have to be made: t iM4jN ,

1) Beca use the “spatial” dynamic elements seen then (3.10) and (3.11) giveunimplementable, (except as index opera tors in a
digital computer, for example,) we can replace then —

by time—delay elements.
- since , for this special case , the suirination set of2) In order to have a f inite orderdescriptiOn , (3.10) contains only one nonzero point. There—we shall only consider a bounded frame system , i.e. fore , we will obtain a bona fide output picturewe assume that the picture frame of interest is an insid e the MxN frame .)lxN frame (with vertical width M and horizontal

length N). Thi, 2—D image scanning. and display system is
— not as complicated as it looks, it can be simple:Note that in order to use time delay elements

we need first  to find a way to cod, a 2—0 spatial Example.: Problem : Design a 2—b digital filter for
system into a 1—D (discrete—tim.) system and vice
versa . Thus we shall propose the following imple- H(z~~ ,ei 1) — 1

aentat ion of a 2—D f i l t e r :  • 1+0.3z +O.2i +0.lz u 4

1) The input scan generator code. the 2—D for a frame: MXII — lOOxlOl. Assume D.0.Ol as.
spatial input into 1—0 (time) data according to Solution. Ci) ISGthe mapping function t(.,.)

In this special franc (with ttatt+l), the input
— ix + 31 (3.4) scanning generator 1. indeed very simple , as shown

in Figure 3.3.
where N and N are relatively prim. integers . 

________________

ii) A 1—D (discrete-time) digital filter
log

processes the 1—0 data generated by Ci). This
subsystem is implemented by replacing a 1 by 4
f~1 by 8 in a 2—0 citcuit realization (e.g. 2—D
controller form) . 6 and 8 are chosen as

6 — ii~ — N-units delay element,
(3.5)

£ — D1 — N—units delay element.
o —Ui) The output frame generator decodes the lmsifnt 101

1—D (discrete—timo) output of the 1—P digital -

filter described above into a 2—D (discrete—spatial) Scanning time: 0.01 ms/pixel — 1 ms/line
pictur, according to the inverse mapping of (3.4). Scanning angle: 45
(1(t), 3(t)) — (Pe mod N , [t — ( P t mod N)N)/M) (3.6) Fig. 3.4 Input Scan Cenerato r 60utput Frame

ub.re P is the unique integer such that Genera tor

P1 — — 1 and 0<P(M (3.7) (ii) 1D  digital fi lter
Constructing the 2—0 realization of Figure

Verification: Let us note the 1—0 (discrete- 3.2 and then replacing z l by 6 and w4 by It we
time) output will be - 

have the l—D realization shown in Figure 3.4

+ 
_ _ _ _ _

V(D) K(D) U(D) ~~ ~
• M(z ,w~~)u(z 1,w 1) 

I 1uI 1.DM,,w 1_D1 
—

— ~ s—i 

s~1_i~
X,~

—l.,D1 C3.8) ( A
where (yij ) represents the 2-0 (discrete—spat ial) 

~~~~~~~~~ 6 _J—
0.3output data fi.1d. Note also that
0—

~(D) j  ff~ D~ . ~~~~~~~~~ 

~ : ~.O1 ma delay elementI
: 1.00 us delay element

__  ~~~~---



(iii) OFO V, T are right coprime and T, U are lef t  Co-
prime. -The output franc generator does the reverse of - 

-

the ISG, displaying the picture instead of scanning. This amounts to requiring that there is no
cancellation in the 2—0 transfer function H(z,ti).InDi-’ensionallty of Global State 
~~~ part I we also provide the important property

Con~iddr1ng a bounded frame (MxN) system , it that if (V,T,U) and (Vj,T ,U ) are two minimal
• 

is interesting to know the dimension of the global descriptions of H, ITf trj . We also presented
state (or initial conditions) needed to process the an algorithm to extract the greatest cor.nor . ri~~ c
NxN “future” data field. Since vertical states (loft) divisor of two polynomial matrices , wh ich
convey information vertically, all the vertical enables us to find a minimal des,r ipt~on of H from
states alon3 the X—axts are necessary initial con— a nonmininal one.
ditions .~nd their dimension is inN . Similarly , all Def ine A(z ,w) It ((~~htt 

~~~~ 
— A) — An,m

(Z
~
W)the horizontal  states along the Y—axis are neces-

sary initial conditions (with dimension mM) since
they convey information horizontally. Therefore , Then , in the state space description case
in the bounded f ran. case a total number of mN+n14 H — C?(z,u)l3 is minimal if and only if
are needed to summarize the “past” information. (A (z,eu),B) are left coprime (5.1)

andThis very sane idea can be used again from a
computational point of view. Indeed, the number of - (C,A(z ,w)3 are righ t coprime (5.2)
required storage elements for recursive coniputa— 

Definition 5.2 Ci) A,B is modally controllabletions is also equal to nM-i-mN if initial conditions if (5.1) holds.are not zero. However, the initial conditions are (ii) C,A is modally observable ifoften zero, then the-size of storage required can 
(5.2) holds.be reduced to inN (resp nIt) by storing the updated

data row by row (resp. column by column). No These definitions are clearly connected
storage is needed for  the rest of the initial con— to minimality but the state space signif 1—
dit ions — mM horizontal states (resp. . inN vertical cance of controllability and observability disap—
states) — since they are assumed to be zero . This pears in this formulation. This is why we shall
is consistent with the result of Read (12) derived give now an equivalent state—space characterizatLon
from a direct polynomial approach. of the notions of modal controllability and obser—

Another interesting observation concerns the vability . Another consequence is that for a
dimension of the 1—P digital filter contained in single input—single output system , if H(a ,w)
our 2—0 digital f i l ter  design discussed above. b(a.w) and if b and a are copr ime with ~~a — aa(z ,~ )Since it needs it N—unit—delays and a N—unit—de lays , ~~~~ — ~ then if CA~ (z ,w)~~B is a minimal real iza-tine corresponding 1—0 state—space has also a dimen— tion of H(z ,w) we muss have IA (z,w)j. a(z,t~) andsion equal to nN+nN . Note that , despite the high hence p — n and q — m.dimens ion of the corresponding l—D filter, its
high sparsicy is very encouraging for further Hence the validity of our definition of mini-
studies. .ality of a state—space model will depend on our

ability to realize a transf er f unction of ord erIn short, our studies on the dimensionality ~~ (~~~) with ala states. this problem was considered2-b global states have reached a consistent conclu— 
in Section 6 of (183, part II.sion from either theoretical or practical approaches.

A consequence of the relative primeness
criterion for 2—D polynomial matrices given in

4. Global and Local Controllability and -
. (18]. part I is that C and A(z,ui) are right

Observability coprime if and only if
For reasons of space we deferred this Section iiiik (A(z .w)) —

to (181, part II. for any generic point (
~~~~~, 

(~ ) of any irreducible
- algebraic curve V1 appearing in the decomposition

3. MOdal Controllability (Observability) and of V, the algebraic curve defined by IA( a ,w) i  — o.
It is to be noted that the rank is considered overMinimality 
the field K(~~ , ~2). A proof of this i~ given in

In the 1—0 case , the relative primeness con— [18], part II , along with some illustrating
cepts could also be used to define controllability examples.
and observability. In (161 Rosenbrock proved that
• A, B was controllablt if and only if zl—A ,B

were left coprime. 6. Minimality of State—S ’ace Model
C, A was observable if and only if C , st—A It i. shown in the last section and in (18] ,were right coprine. part II , that only a state—space realization with
This approach can be generalized very easily order (n, ui) — i .e .  the same order as the t ransfer

to 2—D systems and will also provide a definition function — can be both modally controllable and
of minimality. modally observable. Now the question is whether
Definition 5.1 Let H(z,ei) — Vf 1U where~ ~~, 1, ~, 

such a realization exists at all.
are 2—b plynomial matrices. It is a minimal The bes t way to prove the existence of such
description of H (z ,w) if and only if realization is by construction. Note that, in the

- - -~~~~~~ -.- - - -



2-D state—apace model, the pirticular transform 

~~~2b (bi0
_a

0ibi0
_a
j0b01fI(bii

_a
i0b10-a10b0?~~[ iCh] 

1~ 0] [
~Chl 

- T F~] (6.1) 
- - 

*
—4a11b01b10)

LO T x l  LxV Vj ci • (6.8)

enables us to change the basis of the state—space. Therefore , the existence of (1,1) order state—
The matrices (A , B ,C ,D} are transformed to space model has been proved by construction. Cl

A — T A T’l H — TB Unfortunately,  (6.4) and (6.S) usually give
— 

(6.2) a set of 2mm nonlinear equations; therefore the
c — cr’ - 

It — D solution may not always be in real nwr.bers . for

In fact, it is more convenient to work with a cc— 
realization with real—gain constraints, we often

nonical form under the “similarity transform” need a realization order higher than n+m . To show

defined by (6.2) . that an (n ,n) order real—gain realization ~ay not
exist, ~t is easiest to work on an ~xample.

In the 1—b case, all minimal state—space model
can be transformed to the controller canonical form. 

Example 6.2 The problem is to show that there is

Similarly, almost all (18] 2—0 state—space model 
no (1,1) order real—gain realization for the

can be transformed to the following modal controller 
transfer func tion

form (A , B, C,) (assuming D — 0) z + w 
-

rz~—e a~ ~ A 1 
~~~— I zW — 1

A C 12 - ~ 1 £1 (6.3) Solution: Let us assume
— 

LA;l Z~-S~~~J 
C - ~~~~~ 0 0 

ci] 
ci

where ~~~~~~~~~ were defined in (3.3) and the 
~ 
— [ H

B O  f 
-entries of *12 and *21 are to be chosen such that (6.9)

dec(A(z,w)) — a(z ,w) (6.4) 
- 

C — Is~ in)

and Since a1~ —1, B cz~
1 Then (6.4) is satisfied.

and (6.3 becomes

A(z,w) B

det[ 
—c 

— b(z w) 
• 

- 
(6.5) fhz + egw — (ehci~ + gfci) — a + w (6.10)

or equivalently,

ft — 1 (6.11)
It is easy to check that, in (6.4), the co— 

-

efficients (a~0,Oci<n) and (a0 ,o<i<.) have already eg — 1 (6.12)

been matched. Si iTarly, in (~.4V~~the coeffici— 
eha~ + gfa — 0 • (6.13)

ants (b 10, 0<I” n ) and (b0j . 0~j <m) have already
been natched ”Therefore, only 2mm coefficeints Now, (6.13) x hg — (6.11) £ g2tL — (6.12) x h2a~
(aj~ ; lci~n , l J c m} and (bij , l<i<n , l~,j< m} are gives
to be matched. In other words, ti~e~e are totally - g2ci + h2a~ — 0
2mm (nonlinear) equations to be satisfied. Com et— (6.14)
dently, the number of free parameters in matrices
*12 and A21 is also 2mm . Therefore it is natural 

Since (6.14) has- no real number solution, no (1,1)

to conjecture that a solution (or, more precisely, order real—gain realization exists, (e.g. f • h -

a finite number of solutions) should always exist. e — g — 1 , a — —B — ,Cr’). 13
Now let us examine the plausibility this In the practical aspect, real—gain realiza-

conjecture by taking a low-order example. tions are much more desirable than complex
realizations because the former are much easier to

Example 6.1 (1,1) order case physically implement. Therefore our (2m+n) order

For ease of notation, let *12 — ci , A~~ — B. real—gain realization (cf. Section 3) are justi—

Also (without loss of generality) let us assume 
fied to be practical and low.crder realizations.

• that b10 n~ 0 (otherwise , we may have to use another Indeed, for the transfer function in Example 6.2,

canonical form) . Then (4) becomes the minimal real— gain, realization (*, B, Cl can be
- obtained by our realization method ;

zco4-a01
.z+a 10

.w-dB — z~*aoi.z+a,O.w4a1j or equ iva— 10 — l 01 ~~# 
— (11011aB — —all 

lently
(6.6) A . 111  ~~

•

a d  (6.5) becomes L0. —1 0 ~ 
(6.15)

b01z4b10w~~a10b01+a01b10a4b01B) • b01s+b~0i*b11
or Special Transfer Functions

In designing digital filter, the transfer
b0164b10a — b11—a01b10—a10b01 

- 

, 
(6.7) function may be intendedly chosen in a certain

Since b10 ,f 0., (6.6) and (6.7) have solutions 
form for the purpose of an easier and/or butter

(private cow.unication).

— 0 - ______ -~~ - - - - - - ~-



realization. Therefore , it is wor th mentioning Remark: In many design problems the constra int ,
that some special types of transfer function can be on numerator are much weaker than on done—i nat or ,
easily realized in (ni-in) order real—gain realiza— hence this second form seems to have higher pocen—
tions. There arc two important special types of tial in praetical applications.
t ransfe r functions:

- i. with separable denominator. 
- REFERENCESii. with separable numerator. -

Let us first consider the separable denominator 1. S. Attasi, “Sysr~mes lineaires homog~nes ~
deux indices ,” Rapport LABORIA, nS 31, Sep—case. Assuming
tember 1973.- — l — l1 —1 b(z ) 

— 
~~~ i 1 ) 

‘ (6.16) _2. S. Attasi, “Mod~lisacion et Traiten~en t des
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________________ • ~of%ne• Appepdix: 2-0 Levinson Alnortthms: The follow ing - ~ (n,m) 
~- set of results were motivated by the problem of

‘determining stability of 2-0 rccurstvâ f i lter s . . as the j th column of the data array, 0 <  j  < n
andIn the 1-b case the connections between stabi l tt ~orthogonal polynomials and the Levinson recursions ~~~~ ~ (.~, (n~m)l 

,~~~,,11(fl~m) ’ ].
are by now well known , in

the data array scanned column by column . Now theIn the 2-D case, Shank conjectured that the
least—squares inverse, say b(z ,w), of an unstable covariance of 11(n ,rn) is given by
2-b polynomial a(z,w) (of degree n in z, in

in w) is stable , i,e ,,  E(v
(f,n)

~
(f,n)t

; _,~~,
(n ,m) 

(A.5)
wh ere ~j~ (fl ,in) is a (n+l) by (n+1) block Totplit zii
matrix with Toeplicz block entries, R,j_j • [~ 

n 1mhE b~1z~) — b(z ,w) : l/a(z ,a) , (A.l) of size (n*i) by (mi-i) and R_k —i,j—O,0 (Rk)ij• rk j..L. Now, letwhere b(z,w) minimizes 
A

Ii  — a(z,w)b(z,w)112 
• (A.2) y(n ,~~ fl,m) • E(y(n,i)~y(r ,s)

or (0,0) ~ (r ,s) ~ (n,m),(r,s) # (n ,4)],
- • ~~~~ a~fl 2 

0 < ( . < s t  (A.6)
with (0,m) - 

(n ,n)

~~~~~ 
(i,,O,...,0J, (lx (2n + 1) (m + 1)1

— ~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~(n ,4) :

and the Toeplitz block Toeplits matrix a. contain- . 
~o,ci~ (n,O)ing the coefficients of a(z,w) such that (a l)

is the vector of the coefficients of the product
polynomial (a(z ,w)b( z ,w)] .  Then ~ is given by (n ,4;n ,ts) - 11(n,m) 1 (n ,m)
the solution of 

a(~,4) (A.7)
where

it k (a~a.]~ — 
‘~O a00 (A.3) 

a
(f h m) • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I

By applying the Levinson (LAW) recursions (19], for (n ,4)
block matrices developed by Robinson and Wiggin s and

~m-C+1 position(20), to (A.3) b can be obtained from the first (fl lin)’(n 4 ) —column of the block solution ~ B —  [I..,,0,...,0]’ , a0Or with
So that if

—

a C
b(s w) — t b 1 (z)w~ — w’b(z) 

- 
. (A.4)

i—o y(n,t.;n,in) — y(n ,4;n ,m) - y(n ,t.;n ,m)

— (i!L’ ~~~z~ •••1~~ )B 
~i — w ’B(z)t 1 . Then 

~ (n,in)’ — - v (n
~

m) ’a(n ia) (A.8)Using the property of the LAW recursions that
a( z)~ has its roots inside the unit circ1~e, the where

g.c.d. of (b j (z) J ,  vhich divides IB (z ) I  - contains
a subset of these roots. 0

(n ,m) 
— !j ® 1 ,.t + (a~~’~ ’ (n ,m) : (n ,m)

(n ,a) ...:a(n ,t.): ~~~~~~~~We can therefore conclude that the nonprimitive • (A.9)facter s of b(z.~-) --the contents in z and i--are
Note that diagonal entries of top block of- indeed stable. a~n ,m equal unity, and denotes Kronecker

However Genin and Ramp (21) proved that product . ‘ Similarly we can define
b(s,w), therefore the primitive factors , are in
general not stable for n,m> 1. (k,m;n,a) —

A 2-D Levinso, Alr ’orithm : Cenin and Ramp developed (0,0) ~ ~~~~~ < (n ,m) ,( r ,s) ti (k ,in) ) • (A.6’)• 2-D generalization of the orthogonal polynomials
on the unit circle. We give here an equivalent 

— v (n ,m)S
a

(n ,m) 0 < k < n  (A.7’)recursion in the time-domain using a stochastic (k ,m) ‘ — —fra mework (see , e .g. ,  (19]).t also
We consider a finite window of a scalar 2-D

stationary stochastic process tvtj. i e(0,n],j (o,.3)
with zero mean and covar tance -

E(y~,~
y
~~

) T t_h a .k 
(k,a;n,a) — y(k , m;n ,m) - (k,m;n ,m)

rj :-j ; ;-~j~j f~ z;a~~ a;;E 17 ;I;;developad and
such recursions (pr ivate coomunication) . -

- — -  — - - —  - - -
- -,•- •- - - — • ——-~~- -



— - ~
(n ,m)’a(n,m) 

~ (A.8’ ) e*(m ,m) 
— 

~~® jm~~~flR)ju ~

where ‘
e (m,m) 

—

a~
m $!~

)_x~~l®!l+(a % m
~ ...a

(n sm) :a (n~
tn) ](A 9. ) Then(k ,m ) ” ~ (0,m)

Note that diagonal entries of blqck omposed of it(nim)~a*
(fl,m)a*(n,m)] — (e*(n .m)e~

a(n ,a) ](A I2)ith roy of j t h block entry of a~m ,m
~ equal unit

Also, the first colt mns of a~~”~
) and of 0(n ,m~~ and

are the sane . Then by (A.5) , (A.8) and cA.8’Y * (in ,m)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 3 Diag(c(n_i ,m;n ,m) )J

~ Ø.~~~i —r n
* (in ,a)

and also, by (A.6) and (A.6’) — ®!sw-i

— (e(n m) ,e(n .tn) ) , (we have used (AØ5)(C® D) — AC Ø BD) . Similarly

e*(n,m) — 
~ms-l®

3m Diag(c(n,m-i;n,m))J —
..
,
~, ~~Dlag(e(n—i),m;n,m))®!1, ((infi) x (n-fl))

- 
c(k ,m;n ,a) ~ 0 

- —

c(n,t.;n,m) ~ 0 Now define

a e1®Diag(c(n ,m-i;n ,a)) , - .z
(m ,m) 

~ (B 
1’~~r ~~~~

‘—i 
]a~~1m) 

(A.13)C -
hence -

— (ecm~
m) ,e(f1n)] (A.lO) - 

p(n~m) 
~ ~~~~ ..., RalR~÷l]a~~~

m)
. (A.l4)

are the 2-b Levinson equations, therefore we have Now, the 2-D Levinson recursions can be described
n+mf l auxiliary solutions. Also, the first column - as follows , Increase in in: n— ,n+1, m— ,m,
of f$nin~ (or of Q~n ,m) since they are the same) see PigureAl, — —

F I e(n.m)1given y(i ,j) : (0,0) < (i ,j) < (n ,m),  i.e., it is
the 4+ predictor of y(n ,in) (one quadrant-
predictor) . The last column of 0(n ,n%) gives the 

~
(n+l,m) ~~~t .m)

corresponds to .the 2-b causal estimate of y(n,in) 
- 

r t—i — 
I e~~’~.4 predictor and the last column o~ a~”M gives e

~~~~~ e~
(
~’~
) ‘

the •‘- predictor.

The Levinson Recursions : First define - i
~ {1 

if i—m-j 0 -
~~ iii < a0 else

Now, observe that the following reorderings hold: ~~~(m~m) 
— ~~ 

ém,m)J )  .

~~n ® ~~~~~~~~~~ 
(3 ® J )  — ~

(n m) 
, (A.ll) Now, let

hence . 

f [a ”~

] 
-~~~~~~~~~~~~~~~~~~ ~~ ®“u? c3n® J~)(a~

Tt
~
in) ,a~tt Pa) ] 

~~(n+l,a) 
— 

(
-~~~~~~~~

1(n9.l) (infl) 
\J ~— 

~~ n® J ~ 
n1a) ,ecnlm)]

so that _________1 E:
(n Im)_ 1

~~
n Im) 

~~~ ,m)_ 1

I(a.m) (~~ØJ )(a (n Im)~~Cn Ia) ] (e(n1m) ,e(m 1m) ] [a:~
.m’j ) 

(AdS)

and we multiply 
• . 

where

1~ 
o ) . 

~~~~~~~ — ~~~~~~ - ~~ (n,m)~*(n1a)-lg(n 1m)
I n C , C .  C • C C

‘In Then
on the right and denote it

(n+l,m)
~
(n+l,m) 

— !l® 1a1.i (A.16)
— ®,

~a a r a ‘ — (n+l ,a)and the diagonal of the top block of U

0*(a ,a) 
• ~~ ®~ 

~2 (n ,n)3 equals Diag(c(n+1,m—i;ni- l ,in) )”1 so that
a a a c a is just obtained by x e—normalizing the co1unm~ of

and

_____ _______________ —— 
_ 

— - —  -_4
• - - -

~~~~~~~
-- - - - -- - - 



I
’

- ~j (t*l.m) 
-

C •

~~~~~~ote 1: £ (n+l ,k;u*l ,m) ~f 0 otherwi~e deleting
the  kth column aüd kth row of ~~~~~~~~~~ we
could find c~ : ,~~

n4.l,m)
~ • 0. But ~~ ni-l,m)

is a covariar .cc and this would mean that the
estimation problem is singular.
N ote 2: Similarly c (n+ l ,k~n+l ,m) ~ 0 otherwise
there would be C: tt(n’1’l ,m)~ — 0. Also

• 
• (n ,tn) 

~n-f l (n+l,m) 
- 

Pr mI-i .

r (-
•

~~~~~‘ 
1 c ’ ~_ ..—V

and let ~~~~~~~ 

- 

v,~~e SectIoS

I ~~~ 
,. g~tt SSCÜOR

~ 
TI+i_J 

• uNP’- ’~~” 
ç~rr)

~~(i*l ,m) 
— Lc~

hn)i - ~~(nl~l Im)
p

(n I m) (A.l7 
-

then - 
- LI - — —— 1

- 

~ ~ J
— [a~~~1 un) 

á
(nf l am)] , (n4-2 columns) 

•

(A.l8)
whet-c a~r~1m) is the first  column of a1~~

ihn). -

To obtain the recursioi3s for an increase in in ,
we Just have to reorder ~~~~~~ in blocks of size
(n+l)x(n+l) then the roles of in and in are
exchanged as well as a and at- and we can use
the same recursion as t~e one just described. 

•

This version of the recursion enables us to
increase in and in separatel y, instead of the
scheme proposed by Cenin and Kemp where rn — n.

Eote 3: The inversions required by these recursions
have additional structure , i.e., the matrices are
typically non-Toeplitz , but sums of products of
Toeplitz matrices. One can take advantage of such 

• - 
-

a structure by using generalized Levinson recursions
(22 3 to find a representation of the inverse of such
~natrices also in terms of sums of products of Toeplitz
matrices. Expressions with Toeplitz matrices,
since they are related to convolutions, can be
evaluated using Fast Fourier Transforms (FFT’s).
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